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The phase diagram of the collapse of a two-dimensional infinite branched polymer interacting with the
solvent and with itself through contact interactions is studied from the g—1 limit of an extension of the
g-state Potts model. Exact solution on the Bethe lattice and Migdal-Kadanoff renormalization group calcula-
tions shows that there is a line of 6 transitions from the extended to a single compact phase. The 6 line,
governed by three different fixed points, consists of two lines of extended-compact transitions which are in
different universality classes and meet in a multicritical point. On the other hand, directed branched polymers
are shown to be completely determined by the strongly embedded case and there is a single € transition which

is in the directed percolation universality class.

PACS number(s): 05.70.Jk, 64.60.Ak, 36.20.Ey, 64.60.Fr

L INTRODUCTION

A long-standing problem in the theory of polymer mol-
ecules in solution is the effect of intramolecular forces on the
shape and size of an isolated polymer. The intramolecular
forces are usually assumed [1] to be of van der Waals type,
consisting of strong, short-range repulsive and weak, long-
range attractive interactions. Depending on temperature or
solvent composition, the macromolecule forms either ex-
tended structures or collapses into a dense globule [2]. The
transition between these two states, which is called € transi-
tion, has attracted a great deal of attention, both theoretically
[3-13] and experimentally, partly because of its connection
with protein folding [14-16].

For the bidimensional linear polymers many theoretical
tools, such as conformal invariance [17,18] and Coulomb gas
[19] methods, can be successfully employed and consider-
able progress has been made in understanding the nature and
the critical exponents at the collapse transition [20,21].

In contrast, much less is known about branched polymers.
In lattice statistical mechanics they are described by lattice
animals, graphs of connected occupied sites on a lattice.
Some examples are shown in Fig. 1. Contact interactions are
introduced between nearest neighbor sites which are not im-
mediately linked by a bond and solvent interactions are in-
troduced between an occupied site and any nearest neighbor
empty sites. In d dimensions lattice animal exponents are
related to the exponents of the Lee-Yang edge singularity of
the Ising model in d—2 dimensions [22]. However, this el-
egant theoretical approach can give only the bulk entropic
exponent for the extended phase. Moreover, branched poly-
mers in two dimensions are in general not conformally in-
variant [23]. This model can be reformulated as the g—1
limit of an appropriate g-state Potts model [24,25]. However,
this formulation has not given any exact results [26] but only
allowed the conjecture that lattice animals could present two
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distinct branches of 6 behavior, separated by a percolation
critical point [9-11].

While there is little exact or analytical information avail-
able for this problem, a large amount of numerical work has
been done using Monte Carlo [27-29], exact enumeration
[30,8,9], and transfer matrix [31,11] methods. The results of
these analyses are controversial, however, and it is this which
triggered the work to be described here.

In order to describe the purposes and the goals of this
paper let us first introduce some notation.

Let n, b, s, and k denote the number of sites, bonds,
solvent interactions, and contact interactions of the lattice
animal. We are working on a square lattice with coordination
number y=4. Then the relation yn=2b+ 2k + s implies that
three of the four variables are needed to specify the problem
completely. (In two dimensions, this is valid for y<4.) The
statistical mechanics of the model is most conveniently de-
scribed by a generating function. This has recently been de-
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FIG. 1. Possible ground states of the infinite branched polymer
in (a), (b) the contact-rich region of the compact phase, (c) the
bond-rich region of the compact phase, and (d) the extended phase.
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fined in the literature [9,11] in terms of two sets of variables
and it is useful to give both of them here.

Zz=2 x"c;fzn(ym):gk Ay i x"y? 7

= ; eﬁo"%n(ﬁl ’:82) = nzrk an,s,kexp(ﬁon + BIS+ BZk)!
(1.1)

where a, , , stands for the number of graphs with given
n,b,k, and x,y, 7 and By, B;,B, are fugacities. The relation-
ship between the two sets of variables is given by

x=exp(Bo+vB1), y=exp(—28)), r=exp<ﬁ2—2ﬁ%.)

The infinite lattice animal can be described either by taking
n— o or by fixing one of the three fugacities in terms of the
other two [2], say x=x.(y,7) or By= Bo.(B1.B2) (see also
below).

The compact and extended phases can be distinguished
from the scaling behavior of the mean radius of gyration,
(Ry), with the number of monomers N, viz.,

(Ry)~N"”. (1.3)
The phase diagram is sketched in Fig. 2. First, there is a
(second-order) transition from an extended state (with
v=0.6408 in two dimensions [32]) where the different
branches of the lattice animal are widely separated, to a com-
pact state (v=1/d). The locations of this extended-compact
transition which follow either from exact enumeration [9,33]
or transfer matrix calculations [32,11] are in good agreement
with each other. However, there is an important discrepancy,
which is the subject of this paper. While the enumeration
studies [9,33] suggest the existence of an additional transi-
tion between two distinct compact phases, no sign of such a
transition was found using the transfer matrix [11].

The reason a compact-compact transition could in prin-
ciple be present can be better understood by looking at Fig.
1. Among the compact configurations [(a), (b), (c)] which
can fill all space, there are two different types. The first is a
contact-rich (and almost linear) branched polymer [Figs. 1(a)
and 1(b)] and the second type is a cycle-rich branched poly-
mer [Fig. 1(c)]. Contact-rich configurations are expected to
provide the dominant contributions to Z in the 7— % region,
whereas cycle-rich configurations are expected to dominate
as y— . The question is whether or not there exists a sharp
transition between the compact configurations. (A similar
kind of transition has recently been discussed in the polymer
literature [12,34] and it displays some analogies with phe-
nomena occurring in polymer gels, for which a multiplicity
of phases can be realized in the collapse process [35].)

Our aim in this paper is to further investigate the exist-
ence or otherwise of this transition, by considering some
approximations which render the model analytically solv-
able. This will be done using an exact mapping onto an ex-
tended g-state Potts model, which will be defined in the next
section. The results of the approximate analysis of the ex-
tended g-state Potts model will then be reinterpreted in terms
of the lattice animal. Some of these results were already
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FIG. 2. Numerical phase diagram of the infinite branched poly-
mer in two dimensions in the variables (a) 8, — 3,, (b) y— 7 which
are defined in the text. The extended phase is indicated by E and the
compact phase by C. Results are from cluster enumeration (circles)
[9,33] and the transfer matrix (open squares) [11]. The full circles
give the extended-compact collapse transition while the open circles
give the compact-compact transition predicted in [9,33]. The black
squares give the exactly known transition at the percolation point
[9,11] and the collapse transition in the strong-embedding limit

[31].

stated without derivation in [36]. In Sec. III we present the
exact solution of the extended Potts model on the Bethe lat-
tice and derive the phase diagram. This calculation will be
supplemented in Sec. IV by an analysis of the fixed-point
structure of the model resulting from the Migdal-Kadanoff
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renormalization group equations. In both schemes our results
support a phase diagram with a single extended and a single
compact phase. These are separated by a line of @ transitions,
divided into two sections which fall into different universal-
ity classes and which are separated by a higher-order multi-
critical point, which coincides with critical percolation. In
Sec. V we illustrate further the role of the competition of the
contact-rich and cycle-rich states by studying two-
dimensional directed branched polymers, where the cycles
are absent. We find a single line of # transitions in the di-
rected percolation universality class. Finally, in Sec. VI we
present our conclusions. '

II. EXTENDED POTTS MODEL FORMULATION

We are interested in the phase diagram of infinite
branched polymers which are defined by the generating func-
tion Z in Eq. (1.1). Two existing results can serve as a guide.
First, in the case of strong embedding (no contacts allowed),
the extended-compact transition is at y=6.48 and 7=0 [31].
Secondly, it was shown [9,11] that along a certain line in the
x,y,7 (or Bg,B1,B,) space the branched polymer can be
mapped onto percolation. The percolation critical point cor-
responds to the following point on the @ transition line:

yp=2, 7,=2 2.1
(Or Blz - %11’12, B2=O)

Our approach is based on the known [24,37,26,25] exact
relation of the lattice animal with the extended g-state Potts

model with the classical Hamiltonian
H==12 8y 0L 8,18, 1mH 851, (22)
Gy U Gy i !

where o;,=1,2, ...
terms of J,L,H as

,g and the fugacities are expressed in

J+L J+L
N .

(2.3)

x=exp[—H—y(J+L)], y=(e—1)e T=e

The relation of this extended Potts model with the lattice
animal problem is

S limj—lnz, Z=> e 7, (2.4)

qg—1 ﬂq {o}
where fpys 1S the Potts model free energy. The connection in
Eq. (2.4) can be established by considering the graphs in the
high-temperature expansion of the Hamiltonian (2.2) and
matching the weights in such a way as to reproduce the
branched polymer generating function. Thus calculating the
phase diagram of the Potts model gives information about
the phases of the animal problem. This correspondence is
exact. However, approximations are needed to treat the ex-
tended Potts model. Having solved the extended Potts model
in the approximations stated below, we shall reinterpret the
results for the extended Potts model phase diagram in terms
of the lattice animal collapse transition(s). We shall pursue
two approaches.

(1) The exact solution on the Bethe lattice should give the
correct topology of the phase diagram for sufficiently

large spatial dimensions d. While the Bethe lattice solu-
tion is expected to become exact in the d—o0 limit and
should have the same universality properties as a mean-
field treatment (see [38] for a detailed discussion), it has
the advantage over mean-field theories that the self-
consistency equations to be dealt with are considerably
simpler. We point out that for the original branched poly-
mer problem, a Bethe lattice solution is of little interest,
since contact interactions are eliminated on the Bethe
lattice by construction. Contact interactions may be kept
by considering the lattice animal on a cactus lattice,
which is the dual lattice of the Bethe lattice, see [39]. On
the other hand, contact interactions are not projected out
by our treatment of the Bethe lattice approximation in
the extended Potts model, as we shall see below.

(2) We supplement this by an analysis of the fixed-point
structure of the model, using the Migdal-Kadanoff ap-
proximation, which should become reliable in d=1+¢€
dimensions, as reviewed in [40]. Our finding that the
structure of the phase diagram is the same in both ap-
proximations makes it plausible that the topology is
valid for all dimensions. This result is the more remark-
able since it is known, for example in three-component
lattice gases [41], that the phase diagrams found from
mean-field theory and Migdal-Kadanoff approximations
may in general be distinct.

Our aim is to find the phase diagram of infinite lattice
animals through a study of the equivalent extended Potts
model. It is well known that taking the limit n—oo corre-
sponds to finding critical points of the Hamiltonian (2.2).
Transitions between different infinite polymer states then
correspond to multicritical points within the critical manifold
of the extended Potts model, see [2].

We now recall a relationship [11] which will later be used
to simplify the calculations on the Bethe lattice. In principle,
we are interested in the lattice animal free energy F. In the
canonical ensemble (with n fixed), it is rigorously known
[9,13] that
(2.5)

F(B1.B2)=limn™'InZ,(B1,B,)

—

exists and is a convex function in 8; and B,. We now apply
Eq. (2.5) to fix x in the grand canonical ensemble such that
we describe the infinite lattice animal. Using Eq. (2.5), the
animal generating function takes the asymptotic form
Z~3,(xef)", which diverges at the critical point x,. given
by

F=—Inx,. (2.6)
Thus, working in the grand canonical ensemble, it is suffi-
cient to find x, as a function x.(y,7) of the other fugacities
y and 7. Once the critical value of x is obtained as a function
x.(y, ), the canonical free energy follows from Eq. (2.6).

III. BETHE LATTICE SOLUTION

We now describe in detail the exact solution of the
g—1 extended Potts model on the Bethe lattice.
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FIG. 3. Bethe lattice with coordination number y=3 and central
spin oy .

A. Generalities
Consider a Cayley tree (Fig. 3) with y=23 nearest neigh-
bors for each site. Following the terminology of [38], by
Bethe lattice solution we mean the behavior deep inside the
Cayley tree. Let o, denote the central spin of the Bethe
lattice. Then the extended Potts model partition function is

3

2=2 a1 1 0,(aols), (3.1)
40 {s} j=1
where s denotes the spins in the jth sub-branch and
On(ools)=exp(J 84, +LEs 16, 1+ HE,, 1)
Xexp(lE' 53_)S_+LE’ 65105 .1
(O R V)
+HY' 5S,.,1)’ (3.2)

where =’ is a sum over one sub-branch of which the first site
is §;.

B. Derivation of the self-consistency equations
We define, following Baxter [38],

gn(og) = % 0,(ayls), (3.3)

where n refers to the number of iterations performed in the
construction of the Cayley tree. Recursion relations for the
g, are

q
gn(00)= 2 exp(J 8y, s + L8, 185,

S1=

+H5sl,1)[gn~1(51)]2~ (3.4)
Having solved Egs. (3.4) and thus obtained the g,,, the ther-
modynamics is determined completely.

The analysis of Egs. (3.4) can be simplified, in analogy to
the procedure described in [42], by introducing the variables

_8.(09#12,3)

_ _8a(3)
" gu(1) "

" ga(1)’
3.5)

:gn(2)
gn(1)’

i

which, as will become apparent later, are sufficient to de-
scribe the full thermodynamics. Our choice of variables was
motivated by the mean-field treatment of the ordinary
g-state Potts model in an external symmetry-breaking field
[42]. There it was shown that for the distinct ground states
corresponding to different phases the order parameter either
has the same value for all its g components or that at most
the order parameter component which is directly coupled to
the field may be different from the others. In (3.5) we gen-
eralize that result in order to allow for the possibility of a
compact-compact transition besides the expected 6 transi-
tion. As n— o, the variables in (3.5) tend to fixed-point val-
ues =,Y,Z, which can be determined from the recursion
relations (3.4). At this stage, we take the g—1 limit [see
(2.4)] and find the self-consistency relations

x V3w Y2+ 22+ (y/7—2)E?

S P N v Y~ LA

v x7 T (y/ T+ 1) Y2+ 22 -2 E? 3
 x Y2 -2E? (3.6)

S xR Y2 (y/ T+ 1) 22 -2 B2

x 7 24Y24+ 72252

Equations (3.6) can be decoupled after some transformations
of the variables. We then find that there are four cases which
must be considered separately. As we now show, in each case
the problem of solving a set of three coupled equations can
be reduced to the solution of a single quartic equation.

(1) Case A: E =Y =Z. The fixed-point equation is a qua-
dratic equation in &, with the solutions

_1i\/1—4xy

=
—_— T

2xyT (3.7)

From Eq. (3.6), it is clear that = _ is the stable solution
which, using Eq. (2.4), determines the lattice animal gener-
ating function

Z=xrE?>. (3.8)

These solutions are real provided 4xy=1. Criticality corre-
sponding to an infinite lattice animal is recovered at

1
x”=4_y_' (3.9)
(2) Case B: E=Z#Y . We introduce the variables
u=g+Y, v=Y—-E. (3.10)

For v =0, case A is recovered. For v #0, a factor v cancels
from the fixed-point equations (3.6) giving

v=———7§l, (3.11)



3666
Xy (ut—4au) +x7?[4(1— 1)—xy3]u2+2xy27u—y=0.
(3.12

Case C: E+Y =Z. We introduce again u and v defined
by (3.10). For v =0, case A is again recovered. For v #0, a
factor v cancels giving

y 1

TR F G139
x2y74(u4—4u3)+x72(4('r— 1)— %xy3)u2
+ %xy27'u— §=O. (3.14)
Case D: B #Y #Z. We define new variables
a=Y+Z, b=Y-Z (3.15)

and rewrite the fixed-point equations (3.6) in terms of
E,a,b. b=0 corresponds to case C. For b#0, a factor b
cancels giving

(3.16)

(3.17)

Provided E # 1, we solve the second of Egs. (3.17) for a,

(3.18)

y 1—7
—(E l)a——;_

=2
Bt )
X
and find
X227 [EA+ (v m—2)E3]—xy? (1 +xy ) E?

+xydy(1+n+27(1—7]E—-(1—7)2—xy%r=0.
(3.19)

Note that the relation between = and Z remains unspecified.

C. Analysis of the self-consistency equations

The problem has been reduced to the solution of three
quartic equations (3.12), (3.14), and (3.19). Further analysis
is greatly simplified by numerically checking that all solu-
tions in case D where E, Y, and Z are a priori different,
reduce to one of case B, with E=Z. As we shall show
below, this implies that there are only two distinct phases for
the infinite lattice animal on the Bethe lattice. In particular,
that means if any two branches of the lattice animal gener-
ating function calculated in cases A, B, and C meet, all three
solutions have to coincide. It follows that the topology of the
phase diagram calculated in the whole (E,Y,Z) space is the
same as would have been found when only considering

MALTE HENKEL AND FLAVIO SENO 53

(E,Y) space, with Y =Z. We expect the same reduction to

occur in even more generic setups than done in Eq. (3.5).
We only have to consider cases A, B, and C. We introduce

a new variable

u=g+Y. (3.20)

p=ur,

We recall from (2.6) that in order to get the infinite lattice
animal free energy in the canonical ensemble, it is enough to
know x as a function of y and 7. Solving for x=x_.(p;y,7)
rather than solving for p (or u) has the further advantage of
going from quartic to quadratic equations. p now plays the
role of an order parameter and will be fixed by maximizing
x(p) with respect to p. We find
(1) Case A. We have

2(p—2)

Alp;y,7):=xN(py,7)= ——F= (3.21)
py,7) (py P2

(2) Case B. The equation is

xX(yp*—ayp?)+x[4(7—1)p?—xy3p*+2y?p]—y=0,

(3.22)
with the solutions
B.(p;y,m):=xB(p;y,7)
_ 2(1—7)p—y®
py(p*—47p—y?)
+\/p(41'2—87+4+y2)—4y2
Vp(pr—d1p—y?)y

(3.23)

(3) Case C. The equation is

1 1
x(yp* =4y p?) +x{ 4(1=1)p* = 7xy’p*+ 5%

=0, (3.24)

=<

with the solutions

1
C(psy,1): =x(psy,7)= 3 B(p;y/2/ 7). (3.25)

To get the equilibrium physics, we have to minimize the
lattice animal free energy F(y,7) [see Egs. (2.5) and (2.6)]
with respect to p or equivalently to maximize x(p;y, 7). For
case A, we have

e | (2(1)—2)) 9F p—4
=—Inx=—In|l —— s _:—_’
P’y op  p(p—2)
7F “1>0 3.26
w870 (3:20)

p=4

and F has a single minimum at p=4. Indeed, F=In(4y)
evaluated at p=4 is concave in y.

It remains to be seen under which conditions this local
minimum of F® jis the absolute minimum of F. (It is
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FIG. 4. p dependence of the three solutions A (dotted), B_
(dashed), and C_ (full) of the Bethe lattice recursion relations, for
y=2,7=1.61949.

enough to consider B_ and C_, since the other two solu-
tions B, C; have no maxima with respect to p.) From the
above it is clear that if any two of the solutions A, B, and C
meet, we have in fact a simultaneous meeting of all three of
them. This common meeting point occurs at p =4,

1
A(4;y, 7)=B_(4;y,7)=C_(4;y,7)= I}j’ =1,

1
A(4;y,7)=B,(4;y,7)=C, (4;y,7)= Z}j’ <1
(3.27)
(see Fig. 4). In addition, we have checked that
C_(p;y,7)=B_(p;y,7). (3.28)

For an example illustrating the solutions A, B_, C_, see
Fig. 5. This implies that there are just two distinct phases of
the lattice animal which are described by the two solutions
A(p;y,7) and C_(p;y, 7). Furthermore, we want solutions
such that the fugacity x is real and positive. This yields the
condition

2, case A

p= (y/2)*
(17— 1)%+ (y/14)%°

3.29
case C. ( )

=]

On the other hand, the unstable solution =, from case A
always corresponds to p=4. Furthermore, we argue in the
Appendix that for p>4 the solution C _ is not a stable solu-
tion of the self-consistency relations (3.6). We therefore must
have

p=<4. (3.30)

To get the transition lines between the two phases, note
that dC_/dp =0 if and only if 7=2. Furthermore
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FIG. 5. Phase diagram of the extended Potts model on the Bethe
lattice. The phase labeled A corresponds to the extended lattice
animal while C corresponds to the compact lattice animal. The line
indicated by short dashes is first order and the full line is second
order. The black square at y=8,7=2 indicates their meeting point.
The jump Ap as a function of y between the phases A and C along
the first-order line is indicated by the long-dashed line and is shown
on the same scale.

maximum if y>8

C_(p;y,2) has at p=4 a { turning point if y=8 (3.31)

minimum if y<8.

To locate the transitions, one must distinguish two cases.
First, for y<<8, one has a first-order transition. It is given by
the conditions

1
C‘(p;y,7)=A(4;y,T)=E,

oC_

o (p;y,7)=0, (3.32)

62C_<0
o'?pj = B

At this transition point, p jumps from its value p=4 for 7
small to a new value p.(y,7)<<4. The location of the line
and p. have to be found numerically.

Second, for y>8 and 7>2, numerical studies show ‘that
C_(p;y,7) has a maximum at some value p’<4. For all
p<4, C_>A and the state described by p’ is the equilib-
rium ground state. As p—4, the two solutions approach each
other continuously.

Finally, for y=8 and 7=2, the second-order line ends in
a tricritical point. The two transitions are shown in Fig. 6. We
also show the jump in p, Ap=4—p_.(y,7), and observe that
Ap~(8—y) fory—8~.
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FIG. 6. Fixed-point structure which follows from the Migdal-
Kadanoff renormalization group for the extended Potts model (2.2)
for g—1 and €é—0. The plane p=1 is also shown to guide the eye.

D. Summary

Studying the phase diagram of the extended Potts model
in the g—1 limit on the Bethe lattice, we find that there are
two distinct phases (A and C above) on the manifold corre-
sponding to the infinite lattice animal. The transition between
them is first order for y<<8 and second order for y>8. There
is a tricritical point at y=8, 7=2. The Bethe lattice calcula-
tion corresponds to a mean-field calculation [38]. Detailed
comparison [38] of the exact solution of the simple g-state
Potts model (that is, L=H=0) in two dimensions with the
Bethe lattice solution suggests that the latter faithfully repre-
sents the model behavior for infinite dimensionality. We ex-
pect the same for the more general models treated here.

IV. MIGDAL-KADANOFF RENORMALIZATION GROUP

In the preceding section, we studied the extended Potts
model (2.2) using an approximation which should become
more reliable with increasing dimensionality. We now wish
to complement this calculation by a Migdal-Kadanoft renor-
malization group study. The Migdal-Kadanoff approximation
preserves the self-duality property of several two-
dimensional models (in particular the g-state Potts model,
see [40,43]) and thus yields the phase diagram exactly. The
bond-moving approximation involved is exact at zero tem-
perature and its predictions for exponents are exact to order
€ in d=1+ € dimensions, as reviewed in detail in [40]. We
therefore hope that the renormalization group calculation
will provide reliable information on the fixed-point structure
for low dimensions.

The Hamiltonian (2.2) has already been investigated using
a Migdal-Kadanoff renormalization group by Coniglio [26].
He used a rescaling factor =2 in dimensionality d=2 and
considered g =1, rather than g— 1*. He identified four non-
trivial fixed points which correspond to (1) an extended lat-
tice animal phase, (2) a compact phase, (3) a percolation
point, and (4) a tricritical point analogous to a 6 point. These
are not sufficient to describe the topology of Fig. 2 and there-
fore it seemed useful to look again at the calculation with
particular emphasis on the possibility of the occurrence of a
compact-compact transition.

Here, we shall consider the case d=1+ €. Furthermore,

as will become apparent, the limit g— 1 has to be taken with
care, because the fixed-point structure changes at g=1. For
d=1+ € and b=2 the Migdal-Kadanoff recursion equations
for the extended Potts Hamiltonian (2.2) are

. [E1+p+(g—2)7]\*
¢ _( et “n
[+ 2n+(g=3) P\
7= ] “2
L[ PP (g=1E N\
P _<1+§2+(q—2)772) ’ “3)
where
E=exp(H2—T), n=exp(—J), p=exp(L+H). (44

Equations (4.1)—(4.3) were obtained by performing a one-
dimensional decimation followed by bond moving [40,41].

The fixed-point structure that follows from the recursion
equations (4.1)—(4.3) is complicated and g dependent. How-
ever, using the g =2,3 cases as a guide [41], in the two limits
of interest to us (¢—1 and €—0) a clear pattern appears and
14 fixed points can be identified. These are listed in Table I,
together with the eigenvalues of the Jacobian evaluated at the
fixed points. We also illustrate the fixed-point structure in
Fig. 6.

Note that the fixed points naturally divide into three
groups. The first group contains the fixed points B, C, and
D for which p*=0cc. The second group, which is the one we
shall be interested in, contains the fixed points, E, F, G,
H, and I which all have p*=1. Finally, the third group
contains the fixed points with p*~0, namely A and the clus-
ter of fixed points around y=1, J, K, L, M, and N. For
g— 1, the last five points merge to a single fixed point.

To understand the physics, we begin by singling out the
completely attractive (or trivial) fixed points. Reading from
Table I the fixed points B, C, D and A, J, N only have
eigenvalues which are smaller than one. Hence they cannot
describe the critical behavior of the infinite branched poly-
mer. Next, we consider the cluster of five fixed points near to
(&*,m*,p*)~(0,1,0). One (M) has two relevant eigenval-
ues, while two (K and L) have one relevant eigenvalue, with
an associated exponent y=d. From the eigenvectors, we
have checked that the renormalization group flow from the
vicinity of one of the fixed points M, K, L always goes
towards the trivial stable fixed points J and N. Since these
five fixed points are going to merge into a single fixed point
in the g— 1 limit and none of them has three relevant eigen-
values as would be required from a percolation fixed point,
we conclude that they cannot govern any part of the phase
diagram of the branched polymer problem. We thus find that
the fixed-point structure depends on carefully taking the
g— 1% limit, rather than simply setting g=1.

It remains to consider those fixed points which are close
to the p*=1 plane. Two of these (E and /) are independent
of both ¢ and € and have one relevant eigenvalue. For the
fixed point E, the relevant direction is characterized by the
exponent 1/v=d=1+ €. This is characteristic of a compact
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TABLE I. Fixed points of the Migdal-Kadanoff recursion relations. The following abbreviations are used:

a=texp(—1/e), B=exp(—1/[e2n2]),

y=1(2—q) +[In(2~g)/(g—2)](e~1),
+[(e=1D/(g=2){(g—DIn[(g=2/(g—D]-2 In2—g)}, e=2",

8=(q—1DI(g—2)
N ={(g—2)[In2—)V(g—D}2?~2), \,

=[2(g—2)/(g—1)](e—1)In(2—q). Analytic expressions are correct to leading order in € or to the given
order in e— 1. The numerical eigenvalues for the fixed points F, G, and H are correct up to terms

O(g—1)2.
& 7 p Eigenvalues Comments

A 0 0 0 0 0 0

B 0 1 o0 0 0 0

C o 1 © 0 0 0

D 0 0 © 0 0 0

E 0 0 1 0 0 24

F B 0 1 0.738 1.23 2.014 €=0.01

0.736 1.213 2 €—0

G 0 B 1 0 1.22 2.014 €=0.01
0 1.213 2 e—0

H a a 1 1.0045 1.0045 2.014 €=0.01
1+ 1+ 2 e—0

I 1 1 1 0 0 241

J 0 1 0 0 0 0

K 0 1 (g— 1)@= 0 0 24

L 0 v ) 0 N 24

M 1.19x 1078 1 0.010 0 1.97 2.002 g=1.01,e=1.001

N 0 % 0 0 0 N,

object and we therefore conclude that this fixed point con-
trols the compact phase of the infinite branched polymer. For
the fixed point I, the single relevant eigenvalue is
1/v=d—1. Since v>1/d, we expect this to describe a non-
compact phase and the fixed point / to govern the extended
phase of the polymer.

The fixed points F, G, and H are dependent on g and
€, but for g<<2 all appear in the plane p=1, to leading order
in €. As d decreases they move towards the point E. The
fixed point H has three relevant eigenvalues and therefore
represents the percolation fixed point [which is realized for
H=0 and L=0 in (2.2) and for d=2 the Migdal-Kadanoff
approach is known [40,43] to correctly reproduce the exact
critical point]. F and G are tricritical points and govern the
renormalization group flow along the two critical lines leav-
ing the percolation point H. We point out that the fixed point
G is only found when the limit g— 17" is carefully taken.
However, if one simply sets g = 1, that fixed point is missed,
in agreement with the earlier work of Coniglio [26].

Thus we predict a line of € points which contains two
segments falling into two distinct universality classes and
meeting at the percolation point. The 6 line separates the
extended phase from a single compact phase.

V. DIRECTED LATTICE ANIMALS

So far, in this paper we have considered the structure of
the phase diagram of the infinite branched polymer. Although
the interplay of the different ground state (see Fig. 1) in the
contact-rich and contact-poor regions of the compact phase
might at first sight suggest the existence of a compact-
compact transition, this was not supported by our (albeit ap-
proximate) calculations. To provide some insight\into the

role of the different ground states, we now wish to consider
a model where the spiraling or folding ground states shown
in Figs. 1(a) and 1(b) are eliminated.

For this reason, we now consider directed branched poly-
mers. This model is defined in complete analogy with the
system discussed so far, but requiring that the bonds, sol-
vents, and contacts are directed. We use a square lattice with
the preferred direction along a lattice diagonal. Animal con-
figurations are allowed only if (1) they start from a single
site, (2) all bonds have a component in a preferred direction,
and (3) the solvents and contacts counted in the generating
function have a component in the preferred direction. The
special case where contacts are forbidden (that is, the limit
B,— — ) was studied previously by Dhar [44].

The interest in this model arises because due to the direct-
edness condition ground states of the undirected lattice ani-
mals in the contact-rich region (B;— —%,,— ) are not
allowed. Indeed, the phase diagram of the directed model
(Fig. 7) is quite different, as we shall now show.

For directed lattice animals, it is always possible to reduce
the problem to the “‘strong-embedding” (B8,— — ) case. To
see this, consider a strongly embedded lattice animal (where
all neighboring sites are connected by bonds). Strong embed-
ding is broken when some of the bonds are replaced by con-
tacts. We now ask how often these replacements of bonds by
contacts can be made.

Because of the directedness, it is clear that bonds can be
replaced by contacts only if the strongly embedded lattice
animal contains closed loops. Furthermore, each loop con-
tains exactly one ““final” site. Only one of the two bonds
leading to this final site may be replaced by a contact be-
cause of condition (1). Now, consider a directed lattice ani-
mal with ¢ loops and denote by g(c,k) the number of ways
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FIG. 7. Phase diagram for the directed branched polymer. The
extended phase is indicated by E and the compact phase by C.

of replacing exactly k of the bonds by contacts. Obviously,
g(c,k)=0 if k>c, since no loop can be cut twice. It is also
clear by inspection that g(¢,0)=1 and g(c,1)=2c. Also, for
k=2 the recursion formula

g(c,k)=2g(c—1,k—1)+g(c—1,k) (5.1)
is valid. To see this, imagine placing the first contact onto the
directed lattice animal. Single out one of the loops. Either
this contact cuts this loop, which can be done in exactly two
ways, and one then has to place k—1 contacts onto an ani-
mal with ¢—1 loops or this loop is not cut at all and all £
contacts are placed onto the remaining ¢ — 1 loops. Defining
the function

flesp)= 2 (e, (5:2)
it is easy using (5.1) to show that for all c=0
fle;B)=(1+2eP)f(c—1;8)=(1+2eP)*.  (5.3)

Consider now the directed lattice animal generating function.
On the square lattice, 2n=>0+k+s. Using the Euler relation
c=b—n+1 and (5.3)

%=2 a(n,k,s)ePomePisehak
7

= a(n0.5)ePrePr(14+2eP2),  (5.4)

where a(n,k,s) is the number of directed lattice animals
with n sites, k contacts, and s solvents. & runs over all
directed lattice animals and ¥ over all strongly embedded
directed lattice animals. In the strong-embedded case, k=0.
Thus c=n—s+1 and

ehi §
1 +2eﬁ2> ’
(5.5)

Z=(1+2¢F) a(n,O,s)[eBO(1+2e'32)]”(

This is the strongly embedded directed lattice animal, with
the effective solvent fugacity

_ ePi

ePr=——— (5.6)
1+2eP2" '

The strong-embedding model can be mapped onto directed
percolation [44]. We have thus shown that the fully directed
lattice animal has a single extended-compact transition
which is in the directed percolation universality class. (We
have also checked that the relationship with directed perco-
lation can be established directly from the fugacities given to
the elementary processes of the directed animal model.) In
contrast to the undirected model, there is no change of the
values of the critical exponents along the transition line.

VI. CONCLUSIONS

In this paper, we have investigated the phase diagram of
the extended Potts model (2.2) in the g— 1 limit. We have
concentrated on the structure of the manifold of critical
points, because this is related to the phase diagram of an
infinite branched polymer. Using Bethe lattice and Migdal-
Kadanoff renormalization group calculations, we find a line
of 6 transitions between the extended and the compact phase.
The 6 line consists of two segments which are controlled by
different fixed points. Their meeting point coincides with the
percolation critical point. Although these results were ob-
tained from rather drastic approximations, we expect the re-
sults coming from these to be reliable for large (Bethe lattice,
d—) or small (Migdal-Kadanoff, d=1+¢€) dimensions,
respectively. Furthermore, since the qualitative structure of
the phase diagram is the same in both cases, it is plausible
that the topology of the phase diagram is indeed independent
of the dimensionality. Our results on the structure of the 6
line agree with previous numerical calculations using either
graph enumeration or transfer matrix techniques.

Our calculations give no evidence for a further transition
between two compact phases. While that conclusion does
agree with numerical transfer matrix calculations, it is in
disagreement with analysis based on graph enumeration. We
thus expect the crossing over between the contact-rich
ground states in Figs. 1(a) and 1(b) and the bond-rich ground
state in Fig. 1(c) to be smooth. While intuitively a phase
transition between these ground states might appear plausible
at least in two dimensions because a ground state as the one
in Fig. 1(a) could be seen as a vortex while the state in Fig.
1(c) is not, the nature of that transition is less apparent in
three and higher dimensions. However, graph enumeration
predicts [33] a compact-compact transition in three and more
dimensions as well.

This does not mean, however, that the different ground
states of the model in different regions of the compact phase
have no physical role. This is clearly illustrated by the case
of directed branched polymers, where the spiraling states
[Figs. 1(a) and 1(b)] are absent. Then the multicritical point
on the @ line found for the undirected branched polymer
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disappears and the entire 6 line is in the directed percolation
universality class.
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APPENDIX
Here we study the stability of the solutions of the self-
consistency equations (3.6). These arise from recursions of
the form

xn+1=f(xn) (Al)

and it is well known that a fixed-point solution
x*=1im, _,»x, is stable under small perturbations if and only
if |f'(x*)|<1. Consider first case A. Then we have the re-
cursion

1
B =f(B,)=—+xy7E]. (A2)
With the solutions = . from Eq. (3.7) we have
f(Es)=1x1—4xy (A3)

and thus = _ is the stable and E , the unstable fixed point.
Since p.=27E ., it follows that if 7=2 as is the case for
the A to C transition, we have p=4 for the unstable case.
Next, we look at case C. We introduce u,v from (3.10) and
are interested in the case when v is small, that is, near to the
6 transition. Then the following fixed-point equation for u
holds:

2 1
u2;+fxyru2+0(uv), (A4)

2

‘which is the same relation as for 2Z. From (3.7) it then

follows that if u=u,>1/(xy7), it is an unstable solution.
On the other hand, in the vicinity of the A to C transition we
have from (3.9) that at least in the transition region, all so-
lutions which correspond to p= 7u>1/(xy)==4, will be un-
stable. They are eliminated by requiring that p<4.
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